Search
Search
Participating agencies:   ASPR   |  CDC   |  EPA   |  FEMA   |  NIOSH   |  NOAA   |  OSHA   |  SAMHSA   

NIHHIS News

Event date: 11/10/2020 Export event

Learn How to Map the Urban Heat Island Effect with ARSET this November

Authors: Jonathan O’Brien, Sean Mccartney and Ana Prados (NASA)

Heat stress accounts for more than 600 deaths in the US annually (CDC). This problem is especially prevalent in urbanized areas. Why do more people per capita die of heat in the city than outside of it? There is an artificial weather phenomenon you may have heard about called the “urban heat island” effect. In essence, the effect is just as the name implies, an island of heat in urban areas. This is due to the impervious surfaces (e.g. paved roads, parking lots, and roofs) that cities are comprised of. These surfaces are especially good at trapping heat, but not so good at letting it go. Because of the way these surfaces trap heat, the ambient temperature in the city will often be higher than the surrounding areas, with the greatest difference in temperature occurring at night. This is important to note, since heat stroke susceptibility is dependent not just on the ambient temperature, but also a person’s ability to cool down effectively at night so their body can recover. This is one of the reasons the urban heat island effect is so dangerous.

An interesting fact is that satellites can observe the urban heat island from space by estimating the land surface temperature (LST). Land surface temperature is not the same as ambient temperature, and variations occur depending on the time of observation, but it is frequently used as a proxy for ambient temperature. If the surface of a stove is hot, it’s a good bet that whatever is sitting on top of it is pretty toasty too. To further refine the analysis, field temperature readings are usually collected by boots on the ground to validate and supplement the data collected from space. With these satellite observations we can create a temperature map of the city and the surrounding areas. These maps can be especially useful when paired with other data such as surface type or land cover and human data such as socioeconomic, demographic, and health variables. Through these types of analyses we can gain a holistic view of the heat situation on the ground and how it has changed over time.

Credit: NASA DEVELOP

With increasing urbanization and rising temperatures, this topic will only become more important in the future. If you are interested in getting in on the action and learning how to map out the urban heat island in your city, join the Applied Remote Sensing Training (ARSET) program for a three-part online training beginning on November 10. During the first session of this training series you will learn how to estimate LST in Google Earth Engine using Earth observations from Landsat. You will also be presented with background information on urban heat islands (UHI) and have a chance to familiarize yourself with satellites and sensors that can be used to map them. The second session of this series will introduce you to UHI case studies and go over methods for integrating in situ observations with satellite imagery for select US cities. The third and final session will cover long term mitigation strategies and present a case study of UHI and land cover in Huntsville, Alabama.

Sessions include guest speakers from NASA, USGS, NOAA, and Portland State University. There is no cost to participants and no prior experience is required. For more information or to register, visit appliedsciences.nasa.gov/arset.

Print
7565

x
Upcoming Heat Season Awareness Social Media Campaign 5/16/2022 - 5/20/2022

Upcoming Heat Season Awareness Social Media Campaign

The NIHHIS Interagency Communications Group will be holding a heat season awareness social media campaign from May 16-20, 2022.

NOAA and Communities to Map Heat Inequities in 14 Communities and Two International Cities 10 May 2022

NOAA and Communities to Map Heat Inequities in 14 Communities and Two International Cities

Communities will use maps to inform efforts to combat extreme heat

CPO-funded American Planning Association Book: Planning  for Urban Heat Resilience 6 April 2022

CPO-funded American Planning Association Book: Planning for Urban Heat Resilience

This is the authoritative text for planners on the issue of urban heat island resilience, and it was funded by the Extreme Heat Risk Initiative of CPO.

NOAA's Applied Research Center for Dataset Development (ARC) Develops New Climate Dataset for Health Users 12 November 2021

NOAA's Applied Research Center for Dataset Development (ARC) Develops New Climate Dataset for Health Users

This dataset and tool are directly responsive to requests Dr. Spinrad heard from health practitioners at a NOAA Climate and Equity Roundtable event held in October 2021.

CPO Funds University of Vermont Extreme Heat Project 16 August 2021

CPO Funds University of Vermont Extreme Heat Project

The project will build on outcomes from NOAA's community-led field campaigns, which have helped engage the Burlington community and have produced critical hyperlocal temperature information. But cities, and Vermont's smaller cities and communities in particular, need more tools and resources to help them determine the most effective and efficient solutions tailored to their needs.  

RSS
12345678910Last

Events

NIHHIS is made possible by our participating agencies.

ASPR


CDC


EPA

FEMA


Department of Agriculture Forest Service


NIOSH

NOAA


OSHA


SAMHSA

 

NIHHIS Headquarters

Address: 1315 East-West Hwy, Suite 1100
Silver Spring, MD 20910

About Us

NIHHIS is an integrated information system that builds understanding of the problem of extreme heat, defines demand for climate services that enhance societal resilience, develops science-based products and services from a sustained climate science research program, and improves capacity, communication, and societal understanding of the problem in order to reduce morbidity and mortality due to extreme heat.  NIHHIS is a jointly developed system by the Centers for Disease Control and Prevention (CDC) and the National Oceanic and Atmospheric Administration.

Back To Top